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BEHAVIOR OF A FLAT STRETCHED MEMBRANE WRINKLED 

BY THE RCYJM!I"ON OF AN ATTACHED HUB* 

By Martin M. Mikulas, Jr. 
Langley Research Center 

SUMMARY 

Analysis and experiment are  presented f o r  the wrinkling behavior of 
stretched membranes subject t o  a torque loading through an attached hub. 
analysis makes use of a theory f o r  par t ly  wrinkled membranes which i s  based' on 
a study of average deformations i n  the wrinkled region. Closed-form solutions 
a re  obtained f o r  several  different  boundary conditions, and resu l t s  a re  given 
i n  the  form of torque-rotation plots .  Experimental resu l t s  from tests on t h i n  
sheets of p l a s t i c  fi lm were found t o  be i n  very good agreement with theory. 

The 

INTRODUCTION 

I n  the design of space-vehicle structures there  are  applications f o r  very 
t h i n  walled she l l  structures - she l l s  which are so t h i n  tha t  they can be t reated 
analyt ical ly  as membranes which have zero bending s t i f fness  .and can carry no 
compressive stress. Under cer ta in  loading conditions, w r i n k l i n g  can occur over 
a portion of a membrane structure, and it i s  desirable t o  understand the behav- 
i o r  of the structure i n  such a condition. The attainment of t h i s  goal i s  
advanced by the solution of fundamental wrinkled-membrane problems; one such 
problem i s  tha t  of the  rotation of a hub attached t o  a f la t  stretched membrane. 
This par t icular  problem will be of importance i n  i t s e l f  when s t ruc tura l  members 
or other components must be attached t o  t h i n  membrane-like w a l l s .  

The somewhat re la ted problem of an annular p l a t e  buckled by the rotat ion 
of an attached hub has been solved by W. R. Dean i n  reference 1. I n  refer- 
ence 2 Reissner has solved the  case of an i n i t i a l l y  unstretched membrane by 
using tension-field theory. I n  reference 3 Stein and Hedgepeth present a theory 
f o r  par t ly  wrinkled membranes, and the solution i s  given f o r  the rotat ion of a 
hub attached t o  a stretched membrane of i n f i n i t e  extent. I n  t h i s  wrinkled mem- 
brane theory a detailed study of the  wrinkles i s  not made, but average s t r a ins  
and displacements i n  the wrinkled region are  considered. This theory i s  

*The information presented herein i s  based i n  par t  upon a thes i s  offered 
i n  p a r t i a l  fulfi l lment of the requirements f o r  the degree of Master of Science 
i n  Engineering Mechanics, Virginia Polytechnic Ins t i tu te ,  Blacksburg, Virginia, 
June 1964. 



l imited t o  small average s t r a ins  and displacements i n  the same sense as i n  
l i nea r  e l a s t i c i t y  theory. 

In the  present paper, a generalization of the resu l t s  given i n  reference 3 
is  presented, and an experimental study i s  described which lends credence t o  the 
va l id i ty  of par t ly  wrinkled membrane theory. The primary problem solved i n  the 
present paper i s  tha t  of the  rotat ion of a hub attached t o  a f in i t e ,  stretched, 
c i rcu lar  membrane, i n  which it is  assumed tha t  the hub is attached subsequent 
t o  the  application of a uniform tension i n  the  membrane. The special  case of 
t he  rotat ion of a hub on a c i rcu lar  membrane with zero tension i s  included i n  
appendix A. 
t he  equations given by Reissner i n  reference 2. Finally, the  case i s  t reated 
i n  which the  hub i s  attached pr ior  t o  stretching the f i n i t e  membrane; r e s u l t s .  
obtained f o r  an i n f i n i t e  membrane are discussed i n  appendix B. 

For t h i s  special  case the  equations i n  the  present paper reduce t o  

SYMBOLS 

a 

b 

r 

r0 

t 

u, v 

X, Y 

E 

G 

M 

P 

R 

T 

N 

radius of hub 

radius of c i rcu lar  membrane 

radial coordinate 

radius of p l a t e  as defined i n  f igure ll 

thickness of membrane 

displacements i n  r and 8 directions 

rectangular coordinates 

Young ' s  modulus 

E shear modulus, 
2(1 + v )  

torque 

load per unit  thickness 

radial extent of wrinkled region 

i n i t i a l  uniform t ens i l e  stress 

number of loads 

C1,C2, constants 

a, P angles defined 

2 

i n  f igure 9 



8 angular coordinate 

h function determining s t r a i n  i n  direction perpendicular t o  wrinkles, 
"variable Poisson * s rat io"  

V Poisson's r a t i o  f o r  material 
I 

$ rotation of hub 

principal s t ra ins  €1' €2 

C y  
direct  s t ra ins  i n  rectangular-coordinate system 

shear s t r a i n  i n  rectangular-coordinate system 7xY 

(p,,fll), (p2,f12) polar coordinates (see f ig .  U) 

r, €0 di rec t  s t ra ins  i n  polar-coordinate system 

shear s t r a i n  i n  polar-coordinate system re 

L J  02 principal s t r e s s  e s 

c, ay di rec t  s t resses  i n  rectangular-coordinate system 

shear s t r e s s  i n  rectangular-coordinate system KY 

d i rec t  s t resses  i n  polar-coordinate system rJ 

shear s t r e s s  i n  polar-coordinate system r e  

By defini t ion a membrane has zero bending s t i f fnes s  and, therefore, can 
c a r q  no compressive load. 
f o r  developing a theory f o r  membranes which are wrinkled over a portion of t h e i r  
surface. I n  t h i s  theory it is  reasoned tha t  f o r  wrinkling t o  occur, one princi-  
pa l  s t r e s s  must be zero and the  other nonzero. 
perpendicular t o  the wrinkles while the nonzero principal stress ac ts  along the  
wrinkles. 
t ha t  one principal stress vanish is  given by 

I n  reference 3 t h i s  feature  is  u t i l i zed  as a basis 

The zero principal s t r e s s  i s  

From the  plane s t r e s s  equations f o r  principal stresses,  the  condition 
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Equation (1) along with the  equilibrium equations 
\ 

form a s e t  of three equations i n  the  three unknown stresses f o r  the  wrinkled 
region. 

The s t r a in  along the wrinkles i s  given as 

while perpendicular t o  the  wrinkles the  average s t r a i n  i s  considered t o  be 

u1 €2 = -A(x,y)- E (4) 

The quantity h(x,y) 
f o r  contraction of the material i n  a direction normal t o  the wrinkles. 
boundary between wrinkled and unwrinkled regions of the membrane, 
equal Poisson's r a t i o  for the  material. 

i s  introduced as the  "variable Poisson's ra t io"  t o  allow 
A t  the  

h(x,y) must 

The s t ress-s t ra in  re lat ions may now be writ ten f o r  the wrinkled region as . 
i EX = E(ux 1 - My) 

The usual strain-displacement 

i €y = ;(Uy - ADx) 

?J 2(1  + A )  
E 7xy  = 

equations are 

au 
ax EX = - 

( 5 )  
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where the displacements i n  the  wrinkled region are  considered t o  be average 
displacements. 
theory since the  overall  behavior of t he  membrane structure i s  of primary 
in te res t .  

A detailed study of the  wrinkles has not been attempted i n  t h i s  

ANALYSIS 

I n  the problem treated i n  the 
present paper, the  membrane i s  
stretched by a uniform s t r e s s  
and the attached hub i s  rotated 
through an angle 16 by a torque 
M. After a cer ta in  value of 
torque, wrinkles begin t o  form 
around the  hub out t o  some 
radius R as i l l u s t r a t ed  schemat- 
i c a l l y  i n  figure 1 and shown i n  the 
photograph i n  figure 2. To analyze 
t h i s  behavior, the wrinkling theory 
previously discussed must be used. 
The solution f o r  the  unwrinkled 
region can be obtained readily by a 
plane s t r e s s  e l a s t i c i t y  analysis. 
Since the wrinkling theory involves 
average deformations, stresses,  
s t ra ins ,  and displacements f o r  t h i s  
problem are  considered independent 
of e ( rad ia l ly  symmetric). 

T, 

\Fixed 
B o u n d a r y  

Figure 1.- Schematic diagram of a membrane 
wrinkled by rotation of attached hub. 

Basic Equations 

The equilibrium equations for a rad ia l ly  symmetric s t r e s s  s t a t e  are 

dor ur - be 
- +  = o  ( 7 )  
d r  r 

- + - =  drre 2-553 ( 8 )  d r  r 

Integration of equation (8) gives 

M 
I - r e = - -  25cr2t ( 9 )  

5 



Figure 2.- Stretched specimen in wrinkled condition. L-63-1974 

where the constant of integration has been chosen t o  sa t i s fy  t h e  shear-stress- 
torque relationship 

The strain-displacement relations f o r  radial ly  symmetric deformations are 

Er = - 
U 
r 

6 



Thus, compatibility of the  s t r a ins  requires tha t  

d 
E r  = dr\r%) 

Solution of Equations 

Unwrinkled region.- I n  the unwrinkled outer region of the circular  mem- 
brane ( r  > R), the  following conventional s t ress-s t ra in  re lat ions hold: 

Elimination of ue 
t ions  (11) and (12) 

between the  f irst  equilibrium equation (7) and equa- 

gives the following d i f f e ren t i a l  equation f o r  

2 d a  
+ 3 - = o  r r-  

ur 

d'r 
dr2 dr 

The solution of t h i s  d i f f e ren t i a l  equation i s  

+ c2 
C 1  ur = - 
r 2  

From equation (7) ue i s  obtained as: 

C1 
2 + c2 

r 

To determine the displacements, equations (13) and (14) are substi tuted in to  
the  s t ress -s t ra in  re lat ions (eqs. (12)) and then the  strain-displacement rela- 
t ions  (eqs. (10)) are u t i l i zed  t o  obtain . 

and 

J 
7 

J .  
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The solution of the  second of equations (13) i s  

M 
4 G n r t  

v = - + C3r 

Wrinkled region.- I n  the  inner region, a < r < R, t h e  counterpart of t h e  
condition f o r  zero principal stress (eq. (1)) i n  polar coordinates i s  

Equation (17) together with equation (9) gives 

M2 1 
2 2 4 G  ue = 

4 ~ r  t r 

Equation (18) together with the  first equilibrium equation (eq. (7) )  may now be 
writ ten as 

- + - -  dar ‘r M2 - e o  1 
d r  r 4fi2t2r5 a, 

Equation (19) may be rewritten as 

and after multiplying t h i s  equation through by dr, t h e  quantity rur  i s  
obtained by integration. The solution i s  

and from equation (18) 

M2 - 
- 4Tr2t2r3 

1 

M2 
f 4 -  4fi 2 2 2  t r 
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The s t ress-s t ra in  re lat ions f o r  the  wrinkled region a re  

where h = h ( r )  i s  the  variable Poisson’s r a t i o  as previously discussed. From 
the  compatibility equation (ll), the  first equilibrium equation (7) ,  and equa- 
t ions  (22), the  following d i f f e ren t i a l  equation i s  obtained: 

d h  1 d 1 
d r  r u r  d r  -(rue) - r - = -  

After substi tution f o r  ur and be from equations (20) and (U) i n  the pre- 
ceding equation, integration yields  the  following equation f o r  A: 

1 1 A = -  4n 2 2  t c4r 2 
- I  

M2 

Now, from the  strain-displacement equations (10) the displacements f o r  the  
wrinkled region may be writ ten as 

- .) - -7J 
and 

Y 

4nEtr 

1 

To determine the  seven unknown constants (Cl, C2, C3, C4, C5, C6, 
and R )  seven relat ions are  necessary. Four re la t ions are  obtained from 
enforcing continuity 
between the  wrinkled 
tha t  h = v at r = 
ary conditions on u 

on ur and the  displacements u and v at the border 
and unwrinkled regions and from the  continuity condition 
R. The three remaining relat ions are obtained from bound- 

at  the outer boundary and a boundary condition on and v 

9 



u at the  hub. 
been deterhined i n  re la t ing the  torque t o  the shear s t r e s s  (eq. (9) ) .  

Note tha t  one additional constant of integration has already 

Continuity conditions between - -I_ wr&-kked and unwrinkled _- Eegions.- By using 
the condition h = v at r = R i n  equation (23) 

4,c2t ‘C4R2 
c 5 = v - -  1 1 + 1 2 log( j r  M2 - 1) 

4n2t2C4R2 

. For cry t o  be continuous at r = R 

M 2  2 2 2  + (2 + C$)2 - c4 = 0 
4,c t R 

Two more relations between constants a r e  obtained from the conditions tha t  the 
u and v displacements be continuous at r = R; thus 

and 

Conditions at e-Qeof hub and outer boundary of membrane.- A t  the outer 
boundary the  tangential  displacement i s  taken as zero (v(b)  = 0). 
brane stretched by a uniform tension T, the  radial displacement i s  

u ( r )  = (1 - v ) ~  thus when the  hub i s  attached t o  a f i n i t e  c i rcular  membrane 

a f t e r  the  membrane i s  stretched, the boundary conditions on the radial displace- 
ment u are: 

For a mem- 

T r  

(1 - v)Tb 
u(b) = E 

(1 - v)Ta 
E 

u(a)  = 

When the  boundary condition v(b) = 0 
constant C3 i s  determined immediately as: 

i s  applied t o  equation (16), the  

10 



M 
4&b% 

c3 = - 
When the two boundary conditions on u a re  applied t o  the f i r s t  of equa- 

t ions  (15) and t o  equation (24), respectively, the  following two relat ions a re  
obtained: 

and 

(1 - v)Ta  + log( 4fi2t2c4a2 M2 - 1) - 2cj ( 3 2 )  E 
- 1  

If the  torque M on the  hub i s  s m a l l  enough so tha t  wrinkling does not 
occur, equation (16) holds throughout the membrane so tha t  

where C 3  has been evaluated from equation (30). Thus, f o r  the prewrinkled 

range, the  hub rotation 

as follows: 

v( a )  
$d = - a can be expressed as a l inear  function of M 

X d  M 
(33) 

When the  torque on the  hub i s  increased beyond the value at which wrinkling 
occurs, the solution proceeds as discussed subsequently. L e t  v = l /3  and 
define the following dimensionless parameters: . 



Combine equations (26) and (32) t o  obtain 

r 

L 

+ 1 -  
-2 754 

i$ 
R - - 1  

Combine equations (31) and (28) t o  obtain 

- 

logL3-) - - 1  

Combine equations (31) and (27) t o  obtain 

(34) 

L J 

- -  
The quantit ies M, C1, and are  found from equations (34), (35), and (36) 
f o r  given values of R and a/b by t r ia l  and error .  

- 

The rotat ion of t he  hub 8 = - v(a) i s  found from equation (25) where c6 a 
i s  eliminated by using equation ( B ) ,  and 
Equation (25) can be writ ten as 

C5 is  eliminated from equation (26). 

A nondimensional p lo t  of t h i s  torque-rotation relationship i s  presented i n  f ig -  
ure  3 f o r  values of 
a/b = 0 
ence 3 f o r  an  i n f in i t e  membrane. 

a/b equal t o  1/2, 5/32, 3/32, and 0. Note tha t  f o r  
the solution i n  t h i s  paper reduces t o  the  solution given i n  refer- 

The m a x i ”  s t r e s s  i n  the membrane i s  the  nonzero principal stress at the 
hub. I n  the wrinkled region t h i s  principal s t r e s s  m y  be writ ten as 
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Figure 3.-  Plot of rotat ion due t o  torque of hub on f la t  stretched membrane. 

When the  expressions f o r  s t resses  from equations (20) and (21) are substi tuted 
in to  equation ( 3 8 ) ,  the  following equation f o r  ul i s  obtained: 

61 = c 4 p  (39 )  

Now, by evaluating 
eters previously described, the following nondimensional equation can be 
written: 

61 at the hub ( r  = a) and using the dimensionless param- 



A plot of al(a)/T as a .function of fi is presented in figure 4 for values of 
a/b equal to 1/2, 5/32, 3/32, and 0. 
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Figure 4.- P l o t  of principal stress at hub. 

EXPERIMENT 

/ 

1 
12 

The units used for the physical quantities in this section are given both 
in the U.S. Customary Units and in the International System of Units, 
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( r e f .  4 ) .  
systems of units, appendix C i s  included. 

For the  purpose of explaining the  relationships between these two 

Test Specimens 

Tests were performed on circular  specimens of 1/2-mil (12.7-p)  polyethyl- 
ene terephthalate p l a s t i c  f i l m ,  one of which is  shown i n  figure 2 m a t e d  on the  
t e s t  f ixture .  To achieve an i n i t i a l  uniform stress T i n  a portion of t he  
specimen, 16 evenly spaced radial loads were applied.at  the periphery of the 
specimen. 
a loading a uniform s t r e s s  s t a t e  would ex is t  i n  t he  central  portion of the  
specimen, extending outward about six-tenths of t he  distance from the center. 
Based on t h i s  resul t  t he  specimens were chosen t o  be 28 inches (71.1 cm) i n  
diameter with a boundary ring 16 inches (40.6 cm) i n  diameter. 

An analysis (see appendix D) w a s  made which indicated tha t  under such 

To transmit the  rad ia l  load as smoothly as possible in to  the  th in  p l a s t i c  
film specimen, filament-reinforced pressure-sensitive adhesive-tape tabs were 
attached as can be seen i n  the  photograph i n  f igure 2. 
rounded t o  reduce the effect  of s t r e s s  concentrations. 

The tape tabs were 

Test Apparatus and Procedure 

A schematic drawing of the  t e s t  setup and rotation-measuring apparatus is  
shown i n  figure 5 .  
i s  shown i n  figure 6. 

A photograph of the  t e s t  f ix ture  before mounting a specimen 
The procedure f o r  mounting a specimen w a s  as follows: 

(1) A th in  coat of a synthetic elastomeric adhesive w a s  applied t o  the  hub, 
t o  the  boundary ring, and t o  the  portion of the specimen which would come i n  
contact with the  hub and boundary. 

(2 )  A plexiglass ring was used t o  keep the specimen raised off t he  hub and 
boundary ring u n t i l  t h e  specimen w a s  stretched. This ring w a s  mounted on screws 
and w a s  placed concentric with the  boundary ring on t he  text f ix ture  (see 
f i g .  6). 
top  of the  boundary ring but s l igh t ly  higher. 

The plexiglass ring w a s  then adjusted u n t i l  it w a s  para l le l  with the 

( 3 )  The specimen w a s  then placed over the  plexiglass ring and the 16 radial 
loads were applied through strings which passed over knife-edge supported pulleys 
and were attached t o  separate shot buckets of equal weight (see f ig .  7). 

(4)  It w a s  found tha t  after the  specimen was.completely loaded, due t o  the  
very low constraints offered by the  knife-edge pulleys, the  system w a s  self- 
centering. Therefore, t o  complete the  mounting of t he  specimen, the plexiglass 
ring w a s  simply lowered u n t i l  the  glued portion of t he  specfmen came i n  contact 
with the boundary ring and hub, at which time a completed s e a l  w a s  accomplished 
by applying pressure t o  the  glued jo in ts  with a cotton swab. 
loads were not removed from the  specimen after gluing t o  help insure a fixed 
boundary . 

The 16 rad ia l  

The torque w a s  applied through a pulley which w a s  attached t o  a shaft which, 
i n  turn, w a s  attached t o  the  hub. The shaft  w a s  supported by b a l l  bearings t o  

15 
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I 

To 110 Y 

Figure 5.- Schematic of test setup. 



Figure 6.- T e s t  stand without specimen. L-613-1976. 1 

help minimize f r i c t i o n  i n  the system. A s t r ing  from the pulley attached t o  the 
shaft passed over the lower knife-edge pulley (see f i g .  6) t o  a shot bucket. 
The torque applied t o  the membrane through the hub w a s  simply the weight of the  
shot bucket times the radius of the  pulley attached t o  the shaft .  

To measure the rotation of the  hub, an opt ical  lever  system w a s  u t i l i zed .  
A l/k-inch (0.64-cm) square front-faced mirror with an 8-foot (2.4-m) focal- 
length lens glued on i t s  face w a s  attached t o  the center of t he  hub. 
mirror-lens combination focused the  reflected image of a 0.029-inch (0.074-cm) 
diameter point l i g h t  source from a concentrated a rc  lamp on an 8-foot (2.4-m) 
radius curved screen (see f i g .  5 ) .  The rotation of the hub $ w a s  given by 
the measured displacement of the reflected image on the screen divided by twice 
the  distance from the  mirror t o  the  screen. 

This 

More than 30 specimens were used i n  the development of th i s  tes t ing  pro- 
A l l  of the t e s t  resu l t s  a re  not presented herein because of improve- 

The results of the three f Jna l  t e s t s  a re  f o r  
cedure. 
ments made i n  subsequent tests. 



Figure 7.- Specimen mounted on test stand. L-63-1975 

the  sane value of a/b and give essent ia l ly  the  same results. These resul ts  
are presented as one s e t  of tes t  points i n  figure 8. 

RESULTS AND DISCUSSION 

I n  figure 3 the  analytical  torque-rotation p lo t  i s  given f o r  t he  rotation 
of a hub which i s  attached t o  a f la t  stretched membrane after t h e  membrane i s  
stretched. The f la t  stretched membrane behaves as an e l a s t i c  plate  u n t i l  

231a2~t 
A t  t h i s  value of t he  torque parameter, a region around the  hub i n  an e l a s t i c  
p la te  would go in to  compression, but since a membrane can carry no compressive 
stress, wrinkling occurs i n  t h e  membrane. 
s t i f fness  ( the  slope of the torque-rotation p l o t )  of the  wrinkled stretched mem- 
brane decreases i n  a nonlinear fashion as shown i n  figure 3 .  

= 1. wrinkling occurs at a value of the  dimensionless torque parameter 
M 

A s  the  torque i s  increased, t he  

However, there i s  
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Figure 8.- Torque-rotation resu l t s  for wrinkling of stretched circular membrane w i t h  
a 5  
b 32 

hub attached a f t e r  stretching; - = -. 

no sharp reduction i n  s t i f fness  and the torque can be increased u n t i l  failure 
of the  material occurs. The symbols i n  f igure 3 denote the various values of 
R / a  
t he  figure. 

( r a t i o  of radius of wrinkled region t o  radius of the  hub) as indicated i n  

A dimensionless plot  of the principal s t r e s s  at  the  hub is  given i n  fig- 
Here again the  behavior i s  l i nea r  u n t i l  wrinkling occurs, after w h i c h  ure 4. 

the  s t r e s s  increases i n  a nonlinear fashion. 

A se t  of experimental points representing the results frm three separate 

f o r  the  material t o  compare the  experiment w i t h  
tests are given i n  figure 8 fo r  
value of t he  shear modulus 

a/b = 5/32. It w a s  necessary t o  have the  
G 



theory. The shear modulus G w a s  obtained from the  l i nea r  range of the  tests, 
and t h i s  value f o r  G w a s  used throughout the wrinkled range. It is  believed 
tha t  t h i s  method gives a very good measure of G f o r  the  material. "he value 

of G obtained from these experiments w a s  240,000 ps i  1.65 - . ( 3 
The experimental results,  as can be seen i n  f igure 8, l i e  s l i gh t ly  above 

the  theore t ica l  results. It is  believed t h a t  some of t h i s  small discrepancy 
ex is t s  because the  theory i s  f o r  a perfect membrane with zero bending s t i f fnes s  
while i n  f ac t  t he  p l a s t i c  f i l m  used i n  the  t e s t s  has a f i n i t e ,  though s m a l l ,  
bending s t i f fness .  

I n  appendix A the case of a hub attached t o  an unstretched membrane is  
%rested. For t h i s  special  case, the  equations i n  the  present paper are shown 
t o  reduce t o  those obtained by Reissner (ref. 2) using tension f ie ld  theory. 

To investigate the difference i n  attaching the hub t o  the membrane before 
the  membrane i s  stretched, a discussion i s  given i n  appendix B. It w a s  found 
tha t  although the  s t i f fnes s  i n  the  wrinkled range is  higher f o r  t h i s  case, 
wrinkling occurs ear l ie r .  

CONCLUDING REMARKS 

Closed-form solutions a re  presented f o r  t he  rotat ion of a hub attached t o  
a f la t  stretched circular  membrane f o r  the  complete range of loading from the  
prewrinkled s t a t e  i n to  the  par t ly  wrinkled s t a t e .  
membrane of f i n i t e  extent f o r  the  case i n  which the  membrane i s  stretched before 
the  hub i s  attached, and f o r  the  case i n  which the  membrane i s  unstretched. 
For the case of t h e  unstretched membrane, t he  equations i n  the  present paper 
reduce t o  those previously found by using tension f ie ld  theory. 

Solutions are given f o r  a 

I n  the experimental study, the membrane w a s  represented by a thin, f l a t  

The agreement between experi- 
p l a s t i c  f i l m .  
from a typical  t e s t  a re  compared with theory. 
ment and theory i s  very good but the experimentd results l i e  s l i gh t ly  above the  
theory. 
p l a s t i c  f i l m  i n  these t e s t s  w a s  not a perfect membrane but had some f i n i t e  
bending s t i f fness .  

Torque-rotation studies were made on such sheets and the  resu l t s  

It i s  believed tha t  some of t h i s  s m a l l  discrepancy exists because the  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 9, 1964. 
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APPENDIX A 

SPECIAL CASE OF HUB ATTACHED TO UNSTREI'CHED MEMBRANE 

For the  case of a hub attached t o  an unstretched membrane, wrinkling occurs 
over the  en t i r e  membrane as soon as a f i n i t e  torque i s  applied t o  the hub. 
boundary conditions on displacements f o r  t h i s  problem are 
Applying these boundary conditions t o  equation (24) resu l t s  i n  the following 
transcendental equation f o r  C4: 

The 
u(a) = u(b) = 0. 

~ 4x2t2C4b2 - $ = o  1 

4n t c4a - log( M2 
+ lo( Jc 2t2c4 M2 a2 - l) - 1 

431 % 2C4b 2 2  2 
- 1  - 1  

M2 M2 
( f i )  

When the constant C 4  i s  known, t he  s t resses  can be found from equations (l7), 
(201, and (21). 

To determine the angle of the  wrinkles a ( f i g .  9 )  the  s t resses  may be 
writ ten as: 

2 ur = u1 cos a 

= u1 sin% 

T~ = -al s i n  

o r  

tans=-= 2 - I 

- 1  
4Jc2t2~4r2 

M2 

/ and from t h i s  equation 

a cos a 1 
1 

(A41 W r  i nk I e 
M s i n  a = 

25rt f i r  
This same problem of zero i n i t i a l  tension has 
been solved by using tension f i e l d  theory by 
Reissner i n  reference 2. It w i l l  now be shown 
tha t  f o r  t h i s  case the  solution i n  the  present 
paper is  the  same as the  solution found by 
Reissner. 
between the  angles a and p is  found t o  be: and 8. 

From figure 9 the  relationship Figure 9.- Angles of wrinkle a 

(A5 1 a 
r s i n  a = - s i n  p 

I 



o r  
M s in  p = 

2sat Jc4 
Equation ( A l )  can now be writ ten as ,e 

From equation (A6) the angle p 

+ 
1 - sin2p 

can be found f o r  a given ratia of a/b. The 
r a t i o  of the  radial s t r e s s  t o  shear stress may be writ ten i n  terms of' p as 

J. - 5 2 2  s i n  p 
O r  

Tre 
- = -  

a - s i n  p r 

A t  the  inner and outer edges, respectively, these s t r e s s  ratios are 

and 

Equations (P7) and (Ag) are ident ical  t o  those found by Reissner, and plots  of 
p 
are  given i n  reference 2. 

and the stress r a t i o s  as a function of values of a/b ranging from 0 t o  1 

22 
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APPENDIX B 

DETERMINATION OF THE EFFECT OF ATTACHING THE HUB TO 

THF: MENBRANE BEFORE THE I&MB'RAIVE I S  STRETCHED 

The torque-rotation relationship f o r  the  case i n  which the hub i s  attached 
after stretching the membrane w a s  obtained i n  the body of report by trial-and- 
e r ror  solution of equations (%), (35), and (36) and u t i l i za t ion  of equa- 
t i o n  (37). 
stretched, the boundpry condition at  the hub is  
t h i s  boundary condition t o  equation (24) resu l t s  i n  the  replacement of the 
right-hand side of equation (34 )  by zero. The two equations (35) and (36) 
remain unchanged. These three equations are  now rewritten as 

For the case i n  which the hub i s  attached before the membrane i s  
u(a)  = 0. The application of 

and 

L J 

2 
-4 -2 
R + M  = O  

- -  - 
The quantit ies My C1, and C 4  mus t  be found from equations ( E l ) ,  ( B 2 ) ,  and 

and ( B 3 )  f o r  given values of R and a/b by trial and er ror  as w a s  done pre- 
viously. The hub-rotation parameter p i s  again found from equation (37). 

- 

Note tha t  t he  fac tor  i n  equation ( B l )  which involves the radical yields no 
real torque-rotation relationship; therefore, the bracketed transcendental fac- 
t o r  must be used. a/b = 0 
(an i n f i n i t e  membrane) and the  resu l t s  a re  compared i n  figure 10 with the resu l t s  
f o r  t he  case i n  which the  hub w a s  attached a f t e r  stretching the membrane. A s  
seen there i s  very l i t t l e  difference between the  two solutions. Although 

wrinkling occurs e a r l i e r  

attached before the  membrane i s  stretched, a s l igh t ly  s t i f f e r  torque-rotation 
relationship i s  exhibited i n  t h i s  case a f t e r  wrinkling comences. 

The solution t o  these equations w a s  carried out fo r  

M = s) fo r  t he  case i n  which the hub i s  
2 s a h  2 
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Figure 10.- Comparison of analytical  resul ts  f o r  rotation of hub attached t o  stretched 
i n f i n i t e  membrane f o r  two different boundary conditions at hub. 
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APPENDIX c 

CONVERSION OF U.G. CUSTOMARY UNITS TO SI UNTTS 

The International System of Units (SI)  w a s  adopted by the Eleventh General 
Conference on Weights and Measures, Paris, October 1960, i n  Resolution No. 12 
( r e f .  4). Conversion factors  required f o r  un i t s  used herein are: 

nches x 0.0254 = Meters ( m )  

x 0.3048 = Meters 
Length: 

Force: 

Stress: 

Pounds x 4.4482U6 = Newtons ( N )  

Pounds/inch* x 6.895 x l$ = Newtons/meter2 (N/m2) 

Prefixes t o  indicate multiples of uni ts  are: 

centi  ( c )  



APPENDIX D 

S T W S  DISTRIBUTION W E  TO AN EVEN NUMBER OF EQUALLY SPACED 

RADIAL LOADS ON A CIRCULAR PLATE 

An analysis i s  made t o  determine the  extent of essent ia l ly  uniform s t r e s s  
which can be obtained i n  a p la te  loaded by 
in-plane loads. I n  reference 5 the  l i nea r  e l a s t i c i t y  solution f o r  two diamet- 
r i ca l ly  opposite radial loads P applied t o  a circular  p la te  i s  discussed. The 
quantity P denotes a concentrated load per uni t  thickness. The solution f o r  
N / 2  pairs  of diametrically opposite loads applied t o  a circular  p la te  of 
radius 
given i n  reference 5 f o r  a single pa i r .o f  loads. 

N / 2  pa i r s  of discrete  equal radial 

ro is  obtained i n  the present paper by superposition of the resu l t s  

For two diametrically opposite loads on a circular  plate, the s t resses  at  - Y a point are  obtained by superposing a uniform compressive s t r e s s  u '  = - - 
fir0 

t '  

1, 

and the two simple rad ia l  distribu- 
t ions a t  the point 

The s t resses  upl and oP2 are  

i n  the  directions of p 1  and p2, 

respectively (see f ig .  11). The 
s t resses  fo r  one pa i r  of radial 
loads ( 3 r y  b e y  and T& a re  

given throughout the p la te  i n  
terms of the central  polar coordi- 
nates ( r y e  ) by the following 
transformation: 

N N 

Figure ll.- Coordinate systems and 
s t resses  on an element fo r  cir-  
cular plate  with a pair  of dia- 
metrically opposite radial 
loads P. 
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I 

N s i n  2 q1 + u sinQ2 + ut 
or = u ~ l  p2 1 

s i n  q2 cos 4r2 f N % = uP1 C 0 S q f l  + up2 + a' 

N 

932 T~ = -u s i n  q1 cos q1 - 
p1 

where Jrl = $ - + 8 and q2 = E  2 - 82 - 0. On combining equations ( D l )  

and (D2) the  s t resses  are: 

(P1' $1) ' ( P2' $2) ' The geometric re la t ions between coordinate systems 

and ( r , e )  are  

2 + r 2  - 2rr0 s i n  e 7 P12 = ro 

p22 = ro2 + r2  + 2rro s i n  e 

= roto ) 4 
COS e 

- - s i n  0 

'llllll llll11111111lllIlI lllll IIIIIIIII IIIIIIII Ill I1 Ill I 



The s t resses  ar, ue, and T~ a t  a point due t o  N/2 pa i rs  of loads are now 

found by superposing the  s t resses  f o r  each p a i r  of loads as given by equa- 
t ions  ( D 3 ) .  These stresses may be writ ten as: 

N -- 1 
ue =i 

k=O 

r 

N -  I- 

1 

23~k where 8k = G o  + N, k i s  a 

a range index, and 61 and #2 
are  given i n  equations ( D 4 ) .  
quantity eo i s  the  angle of a 
diametrical l i ne  along which the 
s t resses  are  calculated (see 
f i g .  12).  Since the  stresses are  
the  same between any two consecu- 
t i v e  pairs  of loads, 8 0  i s  
defined i n  the  region 

0 5  e o < - .  For 8 0  = 0 the 

s t resses  due t o  N loads are  
obtained along a diametrical l i n e  
between two loads. 

The 

2s 
N 

Figure 12.- Angle 8 0  between each neighboring 
pair  of radial loads. Equations (D5),  (D6), and 

(D7)  were programed on a high- 
speed d i g i t a l  computer and f o r  



. 

2 '  

Stress Ratios 

t h e  case of N = 16 the  resu l t s  for three values of 80 are  shown i n  f ig-  
ure 13. The quantity uav i n  figure 13 i s  the  stress obtained i f  the load NP 
were uniformly dis t r ibuted around the circumference of the  circular  plate .  
can be seen i n  figure 13, the  s t resses  f o r  16 discrete  radial loads out t o  a 
value of 
uniform s t r e s s  uav = &/fir,. 

A s  

r/ro = 0.6 are  essent ia l ly  tha t  of a c i rcu lar  p la te  subjected t o  a 

0 

. t  
Stress Ratios I ' 

' I  
0 

Stress Ratios I 
I I  

0 

I 

/) gv 
eo= oo 

0.2 0.4 0.6 0.8 I. 0 
- 
b 

eo = 5.625' 

I 1 

0.2 0.4 0. 6 0.8 I. 0 
- 
b 

0 - e = 11.25 
0 

- I I 

0.2 0.4 

Figure 13.- Ratios of s t resses  i n  p la te  loaded by 
obtained by distributing discrete loads 

0. 6 0.8 I. 0 
r 
b 
- 

16 discrete radial loads t o  average s t r e s s  
uniformly around circumference. 
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